
More On Windows Version 1.0 16-1

16
MORE ON WINDOWS
 Demonstration Program: Windows2

Introduction
As stated at Chapter 4, Mac OS 8.5 introduced a number of new features and associated system software
functions to the Window Manager. The new functions associated with zooming and re-sizing windows
were addressed at Chapter 4. This chapter addresses the remaining additional features, which include:

• Support for:

• Floating windows.

• Window proxy icons.

• Window path pop-up menus.

• Transitional window animations and sounds.

• New functions for:

• Creating and storing windows.

• Accessing window information.

• Moving and positioning windows.

• Associating data with a window.

• Adding and removing rectangles and regions to and from a window's update region.

• Setting the colour or pattern of a window's content region.

This chapter also addresses additional features introduced with Carbon and live window resizing
introduced with Mac OS X.

Floating Windows
Floating windows are windows that stay in front of all of an application's document windows. They are
typically used to display tool, pattern, colour, and other choices to be made available to the user. Examples
of floating windows are shown at Fig 1.

16-2 Version 1.0 More On Windows

FIG 1 - FLOATING WINDOWS

In terms of front-to-back ordering of onscreen objects, floating windows, unlike document windows, are all
basically equal. Unless they actually overlap each other, there is no visual cue of any front-to-back
ordering as there is with normal windows (see Fig 1). Because of this equality, floating windows almost
always appear in the active state. The exception is when a modal or movable modal dialog or alert is
presented to the user. When this occurs, the appearance of all floating windows changes to reflect the
inactive state.

Floating Window Types

The sixteen available window types for floating windows are shown at Figs 4 and 5 at Chapter 4.

Opening, Closing, Showing, and Hiding Floating Windows

Floating windows may be created using the function CreateNewWindow (see below) with the constant
kFloatingWindowClass passed in the windowClass parameter.

When a floating window is created, it should remain open until the application is closed, and your
application should provide the user with a means to hide or show the window as and when required.
Ordinarily, it should do this by providing an item in an appropriate menu which allows the user to toggle
the window between the hidden and showing states.

A floating window's close box/button should simply hide the window, not close it. For that reason, the
close box/button in floating windows should be conceived of as a "hide" box/button rather than as a close
box/button.

Floating windows should be hidden when the application receives a suspend event. This is to avoid user
confusion arising from one application's floating windows being visible when another application is in the
foreground. The application's floating windows should be shown again only when the application receives
a subsequent resume event.

Carbon Note

In Carbon applications, floating windows are hidden and shown automatically on suspend and resume events. It
is thus not necessary for Carbon applications to call HideFloatingWindows and ShowFloatingWindows.

Functions Relating to Floating Windows
The following function is relevant to floating windows:

Function Description
AreFloatingWindowsVisible Indicates whether an application's floating windows are visible.

Utility and Toolbar Windows
Carbon introduced the utility window (a system-wide floating window which floats above all other
windows) and the toolbar window, which floats above all document windows in an application but below
floating windows. (See Window Class Constants, below.)

More On Windows Version 1.0 16-3

Window Proxy Icons
Window proxy icons are small icons displayed in the title bar of document windows. Ordinarily, a specific
document file is associated with a specific window, and the proxy icon serves as a proxy for the document
file's icon in the Finder.

Proxy icons:

• May be dragged, in the same way that the document's icon in the Finder may be dragged, so as to
move or copy the document file.

• Provide visual feedback to the user on the current state of the document. For example, when the
document has unsaved changes, your application should cause the proxy icon to be displayed in the
disabled state, thus preventing the user from dragging it. (Unsaved documents should not be
capable of being moved or copied.)

• Provide visual feedback to the user indicating that the document window is a valid drag-and-drop
target. In this case, your application should cause the proxy icon to appear in the highlighted state.

Fig 2 shows a typical window proxy icon for a document in the enabled, disabled, and highlighted states.

FIG 2 - WINDOW PROXY ICONS

PROXY ICON IN ENABLED
STATE (DOCUMENT HAS NO

UNSAVED CHANGES)

PROXY ICON IN DISABLED
STATE (DOCUMENT HAS

UNSAVED CHANGES)

PROXY ICON IN HIGHLIGHTED
STATE (OS 8/9 ONLY) (WINDOW
IS VALID DRAG-&-DROP TARGET)

At Fig 2, note that, in the drag and drop operation depicted at the right, the window's content area is
highlighted along with the proxy icon. Applications typically call the Drag Manager function
ShowDragHilite to indicate, with this highlighting, that a window is a valid drag-and-drop target.
ShowDragHilite and HideDragHilite highlight and unhighlight the proxy icon as well as the content area.

Changing the State of a Proxy Icon

Applications typically keep track of the modification state of a document so as to, for example, inform
users that they has made changes to the document which they might wish to save before closing the
document's window. When a document has unsaved changes, your application should call
SetWindowModified with true passed in the modified parameter to cause the proxy icon to appear in the
disabled state. (On Mac OS X, this is accompanied by a dot appearing in the middle of the close button.)
When the changes have been saved, your application should call SetWindowModified with false passed in the
modified parameter to cause the proxy icon to appear in the enabled state.

Handling Mouse-Down Events in a Window Proxy Icon

When a mouse-down event occurs in your application's window, and when FindWindow returns the
inProxyIcon result code, your application should simply call TrackWindowProxyDrag. TrackWindowProxyDrag
handles all aspects of the drag process while the user drags the proxy icon.

Proxy Icons and File Synchronisation Functions

It is always possible that, while a document file is open, the user may drag its Finder icon to another folder
(including the Trash) or change the name of the file via the Finder icon. The application itself has no way

16-4 Version 1.0 More On Windows

of knowing that this has happened and will assume, unless it is informed otherwise, that the document's file
is still at its original location with its original name. For this reason applications often include a
frequently-called file synchronisation function which synchronises the application with the actual current
location (and name) of its currently open document files.

A document's proxy icon is much more prominent to the user than the document's Finder icon. Thus, when
proxy icons are used, there is an even a greater possibility that the user will move the file represented by
the proxy icon to a different folder while the document is open. The provision of a file synchronisation
function is therefore imperative when proxy icons are implemented.

File synchronisation functions are addressed at Chapter 18.

Functions Relating to Window Proxy Icons

The following functions are relevant to window proxy icons:

Function Description
SetWindowProxyCreatorAndType Sets the proxy icon for a window that has no associated file.

New untitled windows should have a proxy icon so as to be consistent, in terms of
appearance, with other windows.

SetWindowProxyFSSpec Associates a file with a window using a file system specification (FSSpec)
structure, thus establishing a proxy icon for the window.

GetWindowProxyFSSpec Gets a file system specification (FSSpec) structure for the file associated with a
window.

SetWindowProxyAlias Associates a file with a window using a handle to an AliasRecord structure, thus
establishing a proxy icon for the window.

GetWindowProxyAlias Gets alias data for the file associated with a window.
SetWindowProxyIcon Overrides the default proxy icon for a window.
GetWindowProxyIcon Gets a window's proxy icon.
RemoveWindowProxy Dissociates a file from a window.
TrackWindowProxyDrag Handles all aspects of the drag process when a proxy icon is dragged by the user.

Note that SetPortWindowPort (or SetPort) should be called to set the relevant window's graphics port as the
current port before calling SetWindowProxyCreatorAndType, SetWindowProxyFSSpec, SetWindowProxyAlias, and
SetWindowProxyIcon.

Window Path Pop-Up Menus
If your application supports window path pop-up menus, when the user presses the Command key and
clicks a window's title, your window displays a pop-up menu containing a standard file system path. The
pop-up menu allows the user to open windows for folders along the file system path. An example of a
window path pop-up menu is shown at Fig 3.

FIG 3 - WINDOW PATH POP-UP MENUS

Displaying and Handling a Window Path Pop-Up Menu

The proxy icon region overlays the title text region which, in turn, overlays the drag region (see Fig 4).
Your application must be prepared to respond to a Command-click in either region.

More On Windows Version 1.0 16-5

FIG 4 - DRAG, TITLE TEXT, AND PROXY ICON REGIONS

PROXY ICON REGIONPROXY ICON REGION

TITLE TEXT REGION TITLE TEXT REGION

DRAG REGION DRAG REGION

When FindWindow returns the inProxyIcon part code, and TrackWindowProxyDrag returns
errUserWantsToDragWindow, your application should proceed on the assumption that the inDrag part code was
returned by FindWindow.

When FindWindow returns the inDrag part code, your application should call IsWindowPathSelectClick to
determine whether the mouse-down event should activate the window path pop-up menu. If
IsWindowPathSelectClick returns true, WindowPathSelect should be called to display the menu.

If the user chooses a menu item for a folder, your application must ensure that the associated window is
visible by calling a function which makes the Finder the frontmost process.

Window path pop-up menus are demonstrated at the demonstration program associated with Chapter 18.

Transitional Window Animation and Sounds
On Mac OS 8/9, prior to Mac OS 8.5, the Window Manager supported the playing of a sound to
accompany the animation that occured when a user clicked a window's collapse box. Mac OS 8.5 added
support for animation and sounds to accompany the hiding and showing of windows.

The function TransitionWindow may be used in lieu of the older functions HideWindow and ShowWindow to hide
and show windows. TransitionWindow causes a transitional animation to be displayed, a transitional sound
to be played (on Mac OS 8/9), and the necessary update and activate events to be generated.

Creating and Storing Windows
Mac OS 8.5 introduced the following functions for creating and storing windows:

Function Description
CreateNewWindow Creates a window from parameter data.
CreateWindowFromResource Creates a window from 'wind' resource data.
CreateWindowFromCollection Creates a window from collection data.
StoreWindowIntoCollection Stores data describing a window into a collection.

Use of the last three of these functions requires a basic understanding of collections, flattened collections
and 'wind' resources.

Collections, Flattened Collections, and 'wind' Resources

Collections

A collection object (or, simply, a collection) is an abstract data type that allows you to store multiple
pieces of related information.

A collection is like an array in that it contains a number of individually accessible items. However, unlike
an array, a collection allows for a variable number of data items and variable-size items. A collection is
also similar to a database, in that you can store information and retrieve it using a variety of search
mechanisms.

The internal structure of a collection is private. This means that you must store information into a
collection and retrieve information from it using Collection Manager functions.

16-6 Version 1.0 More On Windows

Your application can store a window into a collection using the function StoreWindowIntoCollection. (This
applies to any window, not just windows created using the new functions introduced with Mac OS 8.5.)
Data associated with the window (for example, text) may also be stored into the same collection.

Using the function CreateWindowFromCollection, you can create a window from collection data. Note that
CreateWindowFromCollection creates the window invisibly. After creating the window, you must call the
function TransitionWindow to display the window.

Flattened Collections

Using the Collection Manager, you application can create a flattened collection from a collection. A
flattened collection is a stream of address-independent data.

The 'wind' Resource

The 'wind' resource consists of an extensible flattened collection. Using the Resource Manager, your
application can store a flattened collection, consisting of a window and its data, into a 'wind' resource.

Using the function CreateWindowFromResource, you can create a window from a 'wind' resource. Note that
CreateWindowFromResource creates the window invisibly. After creating the window, you must call the
function TransitionWindow to display the window.

The CreateNewWindow Function

The function CreateNewWindow creates a window based on the class and attributes you specify in the
windowClass and attributes parameters. The following constants may be passed in these parameters.

Window Class Constants

Constant Value Description
kAlertWindowClass 1L Alert window.
kMovableAlertWindowClass 2L Movable alert window.
kModalWindowClass 3L Modal dialog window.
kMovableModalWindowClass 4L Movable modal dialog window.
kFloatingWindowClass 5L Floating window.
kDocumentWindowClass 6L Document window or modeless dialog window.

Note: The Window Manager assigns this class to windows created
using the older window creation functions.

kUtilityWindowClass 8L System-wide floating window.
kHelpWindowClass 10L Help window.
kSheetWindowClass 11L Sheet window. (Mac OS X only.)
kToolbarWindowClass 12L Toolbar windows (above documents, below floating windows).
kPlainWindowClass 13L Plain window (in document layer).
kOverlayWindowClass 14L Transparent window which allows "screen" drawing via CoreGraphics.

(Mac OS X only.)
kSheetAlertWindowClass 15L Sheet windows for alerts. (Mac OS X only.)
kAltPlainWindowClass 16L Alternate plain window (in document layer).
kAllWindowClasses 0xFFFFFFFF For use with GetFrontWindowOfClass, FindWindowOfClass,

GetNextWindowOfClass (see below).

Window Attribute Constants

Constant Bit Description
kWindowNoAttributes 0L No attributes.
kWindowCloseBoxAttribute 1L << 0 Has close box/button.
kWindowHorizontalZoomAttribute 1L << 1 Has horizontal zoom box.
kWindowVerticalZoomAttribute 1L << 2 Has vertical zoom box.
kWindowFullZoomAttribute kWindowVerticalZoomAttribute |

kWindowHorizontalZoomAttribute
Has full zoom box/zoom button.

More On Windows Version 1.0 16-7

kWindowCollapseBoxAttribute 1L << 3 Has a collapse box/minimise
button.

kWindowResizableAttribute 1L << 4 Has size box/resize control.
kWindowSideTitlebarAttribute 1L << 5 Has side title bar. This attribute

may be applied only to floating
windows.

kWindowNoUpdatesAttribute 1L << 16 Does not receive update events.
kWindowNoActivatesAttribute 1L << 17 Does not receive activate events.
kWindowNoShadowAttribute 1L << 21 No shadow. (Mac OS X only.)
kWindowHideOnSuspendAttribute 1L << 24 Window is automatically hidden

and shown on, respectively,
suspend and shown on resume.
(Carbon only.)

kWindowStandardHandlerAttribute 1L << 25 Window should have standard
window event handler installed.
(Carbon only.)

kWindowHideOnFullScreenAttribute 1L << 26 Window is automatically hidden
during fullscreen mode.
(Carbon only.)

kWindowInWindowMenuAttribute 1L << 27 Window is automatically
tracked in Window menu.
(Document windows are
automatically given this
attribute.)

kWindowLiveResizeAttribute 1L << 28 Window supports live resizing.
(Mac OS X only.)

kWindowStandardDocumentAttributes kWindowCloseBoxAttribute |
kWindowFullZoomAttribute |
kWindowCollapseBoxAttribute |
kWindowResizableAttribute

Has standard document window
attributes, that is, close box, full
zoom box, collapse box and size
box.

kWindowStandardFloatingAttributes kWindowCloseBoxAttribute |
kWindowCollapseBoxAttribute

Has standard floating window
attributes, that is, close box and
collapse box.

Note that CreateNewWindow creates the window invisibly. After creating the window, you must call the
function TransitionWindow to display the window.

Accessing Window Information
The following functions are provided for accessing window information:

Function Description
GetWindowClass Obtains the class of a window.
GetWindowAttributes Obtains the attributes of a window.
ChangeWindowAttributes Change the attributes of a window.
IsValidWindowPtr Reports whether a reference is a valid window reference.
FrontNonFloatingWindow Returns a reference to the frontmost visible window that is not a floating window.

FindWindowOfClass A version of the FindWindow function which limits the search to windows of one particular
class. If a window is found at the specified point, but is not of the specified class,
errWindowNotFound is returned and the value of outWindow is set to NULL.

GetFrontWindowOfClass A more explicit version of the FrontWindow and FrontNonFloatingWindow functions.
GetNextWindowOfClass A more explicit version of the function GetNextWindow.

16-8 Version 1.0 More On Windows

Moving and Positioning Windows

Moving Windows

When your application wishes to move a window for a reason other than a user-instigated drag, it should
use the function MoveWindowStructure or the earlier function MoveWindow. MoveWindow repositions a window's
content region, whereas MoveWindowStructure repositions a window's structure region.

The function SetWindowBounds provides a means to set the size of a window in addition to simply
repositioning it. The size and position of the window are specified in a rectangle passed in the globalBounds
parameter. In addition, you may specify whether this rectangle represents the bounds of the content region
or the bounds of the structure region by passing either kWindowContentRgn or kWindowStructureRgn in the
regionCode parameter. The sister function GetWindowBounds obtains the size and position of the bounding
rectangle of the specified window region.

Positioning Windows
Generally speaking, a new window should be placed on the desktop where the user expects it to appear.
For new document windows, this usually means just below and to the right of the last document window in
which the user was working, although this is not necessarily the case on systems with multiple monitors.

The function RepositionWindow allows you to position a window relative to another window or a display
screen. The required window positioning method may be specified by passing one of the following
constants in the method parameter.

Window Positioning Constants

Constant Value Description
kWindowCenterOnMainScreen 0x00000001 The window is centered on the screen that

contains the menu bar.
kWindowCenterOnParentWindow 0x00000002 The window is centered on the parent window. If

the window to is wider than the parent window, its
left edge is aligned with the parent window's left
edge.

kWindowCenterOnParentWindowScreen 0x00000003 The window is centered on the screen containing
the parent window.

kWindowCascadeOnMainScreen 0x00000004 The window is placed just below the menu bar at
the left edge of the main screen. Subsequent
windows are placed relative to the first window in
such a way that the frame of the preceding
window remains visible behind the current
window.

kWindowCascadeOnParentWindow 0x00000005 The window is placed below and to the right of
the upper-left corner of the parent window in such
a way that the frame of the parent window
remains visible behind the current window.

kWIndowCascadeOnParentWindowScreen 0x00000006 The window is placed just below the menu bar at
the left edge of the screen that contains the parent
window. Subsequent windows are placed on the
screen relative to the first window in such a way
that the frame of the preceding window remains
visible behind the current window.

kWindowAlertPositionOnMainScreen 0x00000007 The window is centered horizontally, and
positioned vertically, on the screen that contains
the menu bar in such a way that about one-fifth of
the screen is above it.

kWindowAlertPositionOnParentWindow 0x00000008 The window is centered horizontally, and
positioned vertically, in such a way that about
one-fifth of the parent window is above it.

More On Windows Version 1.0 16-9

kWindowAlertPositionOnParentWindowScreen 0x00000009 The window is centered horizontally, and
positioned vertically, in such a way that about
one-fifth of the screen containing the parent
window is above it.

These constants should not be confused with the older positioning specification constants (see Chapter 4),
and should not be used where those older constants are required (for example, in 'WIND', 'DLOG', and 'ALRT'
resources, and in the StandardAlert function).

Associating Data With Windows
The function SetWRefCon has always allowed your application to associate a pointer to data with a reference
to a window object. An alternative method of associating data with windows is to use the standard
mechanism introduced with Mac OS 8.5. (Both methods, incidentally, are Carbon-compliant.)

The following functions are provided for associating data with windows:

Function Description
SetWindowProperty Associates data with a window.
GetWindowProperty Gets data associated with a window.
GetWindowPropertySize Gets the size of data associated with a window.
RemoveWindowProperty Removes data associated with a window.

Adding To and Removing From the Update Region
The Mac OS 8.5 Window Manager provided enhanced functions for manipulating the update region.
Unlike their pre-Mac OS 8.5 counterparts (InvalRect, InvalRgn, ValidRect, and ValidRgn, which are not
included in the Carbon API), the new functions allow the window on which they operate to be explicitly
specified, meaning that they do not require the graphics port to be set prior to their use.

The following are the functions for manipulating the update region:

Function Description
InvalWindowRect Adds a rectangle to the window's update region.
InvalWindowRgn Adds a region to the window's update region.
ValidWindowRect Removes a rectangle from the window's update region.
ValidWindowRgn Removes a region from the window's update region.

Setting Content Region Colour and Pattern
The following functions set the colour or pattern of a window's content region:

Function Description
SetWindowContentColor Sets the colour to which a window's content region is redrawn on receipt of an update

event.
GetWindowContentColor Gets the colour to which a window's content region is redrawn.
SetWindowContentPattern Sets the pattern to which a window's content region is redrawn on receipt of an update

event.
GetWindowContentPattern Gets the pattern to which a window's content region is redrawn.

These functions do not affect the graphics port's background colour or pattern.

16-10 Version 1.0 More On Windows

Window Scrolling
The following functions scroll pixels within a window:

Function Description
ScrollWindowRect
ScrollWindowRegion

Scrolls pixels that are inside the specified rectangle (ScrollWindowRect) or region
(ScrollWindowRegion).
The pixels are shifted a distance of inHPixels horizontally and inVPixels vertically.
The positive directions are to the right and down. The pixels that are shifted out of the
specified window are not displayed, and the bits they represent are not saved. The
exposed empty area created by the scrolling may be added to the update region or
erased to the background colour/pattern of the window's graphics port.

The following constants may be passed in the inOptions parameter of these functions:

Constant Meaning
kScrollWindowNoOptions No options.
kScrollWindowInvalidate Add the exposed area to the window’s update region.
kScrollWindowEraseToPortBackground Erase the exposed area using the background colour/pattern of the

window’s graphics port.

The Window Menu
Carbon introduced the system-managed Window menu, which is created using the function
CreateStandardWindowMenu. After creating the menu you should add it to the menu list using InsertMenu.
Menu items containing the titles of your application's windows will be automatically added to, and deleted
from, the menu when those windows are created and closed. Floating windows will not be added to the
menu.

It is not necessary to set the kWindowInWindowMenuAttribute attribute on your document windows in order for
them to be added to the menu. Document windows are automatically given this attribute.

Using SetWindowAlternateTitle you can override the title displayed in the Window menu. You would
ordinarily do this if the window title was not expressive enough.

Customising the Window Menu

You can insert your own items to the Window menu by searching for the item with command ID 'wldv' and
inserting your items before that item (that is, immediately before the individual window items). 'wldv' is
the command ID of the divider that separates the window commands from the individual window items.

A problem here is that, at the time of writing, the divider had the 'wldv' command ID on Mac OS X but not
in CarbonLib.

You can append your own items at the end of the Window menu by searching for the item with command
ID 'wlst' and appending your items after that item. 'wlst' is the command ID of a hidden menu item that
marks the end of the individual window items.

Live Window Resizing
On Mac OS X, windows on which the kWindowLiveResizeAttribute attribute is set support live resizing.
When this attribute is set, the window is continually redrawn while it is being resized, as opposed to just
outlines of the window, title bar, and resize control being drawn. Full implementation of live resizing
requires that the contents of the content region also be continually redrawn as the window is being resized.
This requires the use of the Carbon event model.

The demonstration program CarbonEvents2 (Chapter 17) demonstrates live resizing.

More On Windows Version 1.0 16-11

Main Constants, Data Types, and Functions

Constants

Window Class
KAlertWindowClass = 1L
kMovableAlertWindowClass = 2L
kModalWindowClass = 3L
kMovableModalWindowClass = 4L
kFloatingWindowClass = 5L
kDocumentWindowClass = 6L
kUtilityWindowClass = 8L
kHelpWindowClass = 10L
kSheetWindowClass = 11L
kToolbarWindowClass = 12L
kPlainWindowClass = 13L
kOverlayWindowClass = 14L
kSheetAlertWindowClass = 15L
kAltPlainWindowClass = 16L
kAllWindowClasses = 0xFFFFFFFF

Window Attributes
kWindowNoAttributes = 0L
kWindowCloseBoxAttribute = 1L << 0
kWindowHorizontalZoomAttribute = 1L << 1
kWindowVerticalZoomAttribute = 1L << 2
kWindowFullZoomAttribute = kWindowVerticalZoomAttribute |
 kWindowHorizontalZoomAttribute
kWindowCollapseBoxAttribute = 1L << 3
kWindowResizableAttribute = 1L << 4
kWindowSideTitlebarAttribute = 1L << 5
kWindowNoUpdatesAttribute = 1L << 16
kWindowNoActivatesAttribute = 1L << 17
kWindowNoShadowAttribute = 1L << 21
kWindowHideOnSuspendAttribute = 1L << 24
kWindowStandardHandlerAttribute = 1L << 25
kWindowHideOnFullScreenAttribute = 1L << 26
kWindowInWindowMenuAttribute = 1L << 27
kWindowLiveResizeAttribute = 1L << 28
kWindowStandardDocumentAttributes = kWindowCloseBoxAttribute |
 kWindowFullZoomAttribute |
 kWindowCollapseBoxAttribute |
 kWindowResizableAttribute
kWindowStandardFloatingAttributes = kWindowCloseBoxAttribute |
 kWindowCollapseBoxAttribute

Window Positioning
kWindowCenterOnMainScreen = 0x00000001
kWindowCenterOnParentWindow = 0x00000002
kWindowCenterOnParentWindowScreen = 0x00000003
kWindowCascadeOnMainScreen = 0x00000004
kWindowCascadeOnParentWindow = 0x00000005
kWIndowCascadeOnParentWindowScreen = 0x00000006
kWindowAlertPositionOnMainScreen = 0x00000007
kWindowAlertPositionOnParentWindow = 0x00000008
kWindowAlertPositionOnParentWindowScreen = 0x00000009

Window Transition Action and Effect
kWindowShowTransitionAction = 1
kWindowHideTransitionAction = 2
kWindowZoomTransitionEffect = 1

Window Scrolling
KScrollWindowNoOptions = 0
KScrollWindowInvalidate = (1L << 0)

16-12 Version 1.0 More On Windows

KscrollWindowEraseToPortBackground = (1L << 1)

Data Types

Property Types
typedef OSType PropertyCreator;
typedef OSType PropertyTag;

Window Class and Attributes
typedef UInt32 WindowClass;
typedef UInt32 WindowAttributes;

Window Positioning
typedef UInt32 WindowPositionMethod;

Window Transitioning
typedef UInt32 WindowTransitionEffect;
typedef UInt32 WindowTransitionAction;

Window Scrolling
typedef UInt32 ScrollWindowOptions;

Functions

Floating Windows
Boolean AreFloatingWindowsVisible(void);

Window Proxy Icons
OSStatus SetWindowProxyCreatorAndType(WindowRef window,OSType fileCreator,OSType fileType,
 SInt16 vRefNum);
OSStatus SetWindowProxyFSSpec(WindowRef window,const FSSpec *inFile);
OSStatus GetWindowProxyFSSpec(WindowRef window,FSSpec *outFile);
OSStatus GetWindowProxyAlias(WindowRef window,AliasHandle *alias);
OSStatus SetWindowProxyAlias(WindowRef window,AliasHandle alias);
OSStatus SetWindowProxyIcon(WindowRef window,IconRef icon);
OSStatus GetWindowProxyIcon(WindowRef window,IconRef *outIcon);
OSStatus RemoveWindowProxy(WindowRef window);
OSStatus TrackWindowProxyDrag(WindowRef window,Point startPt);

Window Path Pop-Up Menus
Boolean IsWindowPathSelectClick(WindowRef window,EventRecord *event);
OSStatus WindowPathSelect(WindowRef window,MenuHandle menu,SInt32 *outMenuResult);

Transitional Window Animations and Sounds
OSStatus TransitionWindow(WindowRef window,WindowTransitionEffect effect,
 WindowTransitionAction action,const Rect *rect);

Creating and Storing Windows
OSStatus CreateNewWindow(WindowClass windowClass,WindowAttributes attributes,
 const Rect *bounds,WindowRef *outWindow);
OSStatus CreateWindowFromResource(SInt16 resID,WindowRef *outWindow);
OSStatus CreateWindowFromCollection(Collectioncollection,WindowRef *outWindow);
OSStatus StoreWindowIntoCollection(WindowRef window,Collection collection);

Accessing Window Information
OSStatus GetWindowClass(WindowRef window,WindowClass *outClass);
OSStatus GetWindowAttributes(WindowRef window,WindowAttributes *outAttributes);
OSStatus ChangeWindowAttributes(WindowRef window,WindowAttributes setTheseAttributes,
 WindowAttributes clearTheseAttributes);
Boolean IsValidWindowRef(GrafPtr grafPort);
WindowRef FrontNonFloatingWindow(void);
OSStatus FindWindowOfClass(const Point *where,WindowClass inWindowClass,
 WindowRef *outWindow,WindowPartCode *outWindowPart)
WindowRef GetFrontWindowOfClass(WindowClass inWindowClass,Boolean mustBeVisible);
WindowRef GetNextWindowOfClass(WindowRef inWindow,WindowClass inWindowClass,
 Boolean mustBeVisible);

More On Windows Version 1.0 16-13

Moving and Positioning Windows
OSStatus MoveWindowStructure(WindowRef window,short hGlobal,short vGlobal);
OSStatus SetWindowBounds(WindowRef window,WindowRegionCode regionCode,
 const Rect *globalBounds);
OSStatus GetWindowBounds(WindowRef window,WindowRegionCode regionCode,Rect *globalBounds);
OSStatus RepositionWindow(WindowRef window,WindowRef parentWindow,
 WindowPositionMethod method);

Associating Data With Windows
OSStatus SetWindowProperty(WindowRef window,PropertyCreator propertyCreator,
 PropertyTag propertyTag,UInt32 propertySize,void *propertyBuffer);
OSStatus GetWindowProperty(WindowRef window,PropertyCreator propertyCreator,
 PropertyTag propertyTag,UInt32 bufferSize,UInt32 *actualSize,void *propertyBuffer);
OSStatus GetWindowPropertySize(WindowRef window,PropertyCreator creator,PropertyTag tag,
 UInt32 *size);
OSStatus RemoveWindowProperty(WindowRef window,PropertyCreator propertyCreator,
 PropertyTag propertyTag);

Adding To and Removing From the Update Region
OSStatus InvalWindowRect(WindowRef window,const Rect *bounds);
OSStatus InvalWindowRgn(WindowRef window,RgnHandle region);
OSStatus ValidWindowRect(WindowRef window,const Rect *bounds);
OSStatus ValidWindowRgn(WindowRef window,RgnHandle region);

Setting Content Region Colour and Pattern
OSStatus SetWindowContentColor(WindowRef window,RGBColor *color);
OSStatus GetWindowContentColor(WindowRef window,RGBColor *color);
OSStatus GetWindowContentPattern(WindowRef window,PixPatHandle outPixPat);
OSStatus SetWindowContentPattern(WindowRef window,PixPatHandle pixPat);

Window Scrolling
OSStatus ScrollWindowRect(WindowRef inWindow,const Rect *inScrollRect,SInt16 inHPixels,
 SInt16 inVPixels,ScrollWindowOptions inOptions,RgnHandle outExposedRgn);
OSStatus ScrollWindowRegion(WindowRef inWindow,RgnHandle inScrollRgn,SInt16 inHPixels,
 SInt16 inVPixels,ScrollWindowOptions inOptions,RgnHandle outExposedRgn);

Creating a Window Menu
OSStatus CreateStandardWindowMenu(OptionBits inOptions,MenuRef *outMenu);
OSStatus SetWindowAlternateTitle(WindowRef inWindow,CFStringRef inTitle);

16-14 Version 1.0 More On Windows

Demonstration Program Windows2 Listing
// ***
// Windows2.c CLASSIC EVENT MODEL
// ***
//
// This program demonstrates the following Window Manager features and functions introduced
// with Mac OS 8.5:
//
// • Creating floating windows and document windows using CreateNewWindow.
//
// • Saving document windows and their associated data to a 'wind' resource.
//
// • Creating document windows from 'wind' resources using CreateWindowFromResource.
//
// • Managing windows in a floating windows environment.
//
// • Setting and getting a window's property.
//
// • Showing and hiding windows using TransitionWindow.
//
// • Displaying window proxy icons.
//
// The program also demonstrates the creation of the system-managed Window menu introduced
// with Carbon and, on Mac OS X, a partial implementation of live window resizing.
//
// Those aspects of the newer Window Manager features not demonstrated in this program (full
// implementation of window proxy icons and window path pop-up menus) are demonstrated at the
// demonstration program Files (Chapter 18).
//
// The program utilises the following resources:
//
// • A 'plst' resource.
//
// • An 'MBAR' resource, and 'MENU' resources for Apple, File, Edit, Document Windows and
// Floating Windows menus (preload, non-purgeable).
//
// • 'TEXT' resources for the document windows (non-purgeable).
//
// • 'PICT' resources for the floating windows (non-purgeable).
//
// • An 'ALRT' resource (purgeable), plus associated 'DITL', 'alrx', and 'dftb' resources
// (all purgeable), for a movable modal alert invoked when the user chooses the About
// Windows2... item from the Apple/Application menu.
//
// • A 'SIZE' resource with the acceptSuspendResumeEvents, canBackground,
// doesActivateOnFGSwitch, and isHighLevelEventAware flags set.
//
// In addition, the program itself creates a 'wind' resource, and saves it to the resource
// fork of the file titled "Document", when the user chooses CreateNewWindow from the
// Document Windows menu.
//
// ***

// …… includes

#include <Carbon.h>

// ……… defines

#define rMenubar 128
#define mFile 129
#define iQuit 12
#define rAboutAlert 128
#define rText 128
#define rColoursPicture 128
#define rToolsPicture 129
#define rWind 128

More On Windows Version 1.0 16-15

#define MIN(a,b) ((a) < (b) ? (a) : (b))

// …… typedefs

typedef struct
{
 TEHandle editStrucHdl;
} docStructure, **docStructureHandle;

// …… global variables

Boolean gRunningOnX = false;
SInt16 gDocResFileRefNum;
WindowRef gColoursFloatingWindowRef;
WindowRef gToolsFloatingWindowRef;
Boolean gDone;

// ……… function prototypes

void main (void);
void doPreliminaries (void);
OSErr quitAppEventHandler (AppleEvent *,AppleEvent *,SInt32);
void doEvents (EventRecord *);
void doMouseDown (EventRecord *);
void doUpdate (EventRecord *);
void doUpdateDocumentWindow (WindowRef);
void doActivate (EventRecord *);
void doActivateDocumentWindow (WindowRef,Boolean);
void doOSEvent (EventRecord *);
void doAdjustMenus (void);
void doMenuChoice (SInt32);
OSErr doCreateNewWindow (void);
OSErr doSaveWindow (WindowRef);
OSErr doCreateWindowFromResource (void);
OSErr doCreateFloatingWindows (void);
void doCloseWindow (WindowRef);
void doErrorAlert (SInt16);
void doConcatPStrings (Str255,Str255);

// ** main

void main(void)
{
 MenuBarHandle menubarHdl;
 SInt32 response;
 MenuRef menuRef;
 OSErr osError;
 SInt16 numberOfItems, a;
 MenuCommand menuCommandID;
 FSSpec fileSpecTemp;
 EventRecord eventStructure;
 SInt32 sleepTime;
 WindowRef windowRef;
 docStructureHandle docStrucHdl;
 UInt32 actualSize;

 // …… do preliminaries

 doPreliminaries();

 // ……………………………………………………… set up menu bar and menus, customise Window menu if running on OS X

 menubarHdl = GetNewMBar(rMenubar);
 if(menubarHdl == NULL)
 ExitToShell();
 SetMenuBar(menubarHdl);

 CreateStandardWindowMenu(0,&menuRef);
 InsertMenu(menuRef,0);

16-16 Version 1.0 More On Windows

 DrawMenuBar();

 Gestalt(gestaltMenuMgrAttr,&response);
 if(response & gestaltMenuMgrAquaLayoutMask)
 {
 menuRef = GetMenuRef(mFile);
 if(menuRef != NULL)
 {
 DeleteMenuItem(menuRef,iQuit);
 DeleteMenuItem(menuRef,iQuit - 1);
 DisableMenuItem(menuRef,0);
 }

 gRunningOnX = true;
 }

 // ………………………… open resource fork of file "Windows2 Document" and store file reference number

 osError = FSMakeFSSpec(0,0,"\pWindows2 Document",&fileSpecTemp);
 if(osError == noErr)
 gDocResFileRefNum = FSpOpenResFile(&fileSpecTemp,fsWrPerm);
 else
 doErrorAlert(osError);

 // ……… create floating windows

 if(osError = doCreateFloatingWindows())
 doErrorAlert(osError);

 // ……… enter eventLoop

 gDone = false;
 sleepTime = GetCaretTime();

 while(!gDone)
 {
 if(WaitNextEvent(everyEvent,&eventStructure,sleepTime,NULL))
 doEvents(&eventStructure);
 else
 {
 if(eventStructure.what == nullEvent)
 {
 if(windowRef = FrontNonFloatingWindow())
 {
 if(!(GetWindowProperty(windowRef,0,'docs',sizeof(docStrucHdl),&actualSize,
 &docStrucHdl)))
 TEIdle((*docStrucHdl)->editStrucHdl);
 }
 }
 }
 }
}

// *** doPreliminaries

void doPreliminaries(void)
{
 OSErr osError;

 MoreMasterPointers(128);
 InitCursor();
 FlushEvents(everyEvent,0);

 osError = AEInstallEventHandler(kCoreEventClass,kAEQuitApplication,
 NewAEEventHandlerUPP((AEEventHandlerProcPtr) quitAppEventHandler),
 0L,false);
 if(osError != noErr)

More On Windows Version 1.0 16-17

 ExitToShell();
}

// ** doQuitAppEvent

OSErr quitAppEventHandler(AppleEvent *appEvent,AppleEvent *reply,SInt32 handlerRefcon)
{
 OSErr osError;
 DescType returnedType;
 Size actualSize;

 osError = AEGetAttributePtr(appEvent,keyMissedKeywordAttr,typeWildCard,&returnedType,NULL,0,
 &actualSize);

 if(osError == errAEDescNotFound)
 {
 gDone = true;
 osError = noErr;
 }
 else if(osError == noErr)
 osError = errAEParamMissed;

 return osError;
}

// ** doEvents

void doEvents(EventRecord *eventStrucPtr)
{
 switch(eventStrucPtr->what)
 {
 case mouseDown:
 doMouseDown(eventStrucPtr);
 break;

 case keyDown:
 if((eventStrucPtr->modifiers & cmdKey) != 0)
 {
 doAdjustMenus();
 doMenuChoice(MenuEvent(eventStrucPtr));
 }
 break;

 case updateEvt:
 doUpdate(eventStrucPtr);
 break;

 case activateEvt:
 doActivate(eventStrucPtr);
 break;

 case osEvt:
 doOSEvent(eventStrucPtr);
 break;
 }
}

// *** doMouseDown

void doMouseDown(EventRecord *eventStrucPtr)
{
 WindowRef windowRef;
 WindowPartCode partCode, zoomPart;
 SInt32 menuChoice;
 WindowClass windowClass;
 BitMap screenBits;
 Rect portRect, mainScreenRect;
 Point standardStateHeightAndWidth;

16-18 Version 1.0 More On Windows

 partCode = FindWindow(eventStrucPtr->where,&windowRef);

 switch(partCode)
 {
 case kHighLevelEvent:
 AEProcessAppleEvent(eventStrucPtr);
 break;

 case inMenuBar:
 doAdjustMenus();
 doMenuChoice(MenuSelect(eventStrucPtr->where));
 break;

 case inContent:
 GetWindowClass(windowRef,&windowClass);
 if(windowClass == kFloatingWindowClass)
 {
 if(windowRef != FrontWindow())
 SelectWindow(windowRef);
 else
 {
 if(windowRef == gColoursFloatingWindowRef)
 ; // Appropriate action for Colours floating window here.
 else if(windowRef == gToolsFloatingWindowRef)
 ; // Appropriate action for Tools floating window here.
 }
 }
 else
 {
 if(windowRef != FrontNonFloatingWindow())
 SelectWindow(windowRef);
 else
 ; // Appropriate action for active document window here.
 }
 break;

 case inDrag:
 DragWindow(windowRef,eventStrucPtr->where,NULL);
 break;

 case inGoAway:
 GetWindowClass(windowRef,&windowClass);
 if(windowClass == kFloatingWindowClass)
 {
 if(TrackGoAway(windowRef,eventStrucPtr->where) == true)
 TransitionWindow(windowRef,kWindowZoomTransitionEffect,
 kWindowHideTransitionAction,NULL);
 }
 else
 if(TrackGoAway(windowRef,eventStrucPtr->where) == true)
 doCloseWindow(windowRef);
 break;

 case inGrow:
 ResizeWindow(windowRef,eventStrucPtr->where,NULL,NULL);
 GetWindowPortBounds(windowRef,&portRect);
 InvalWindowRect(windowRef,&portRect);
 break;

 case inZoomIn:
 case inZoomOut:
 mainScreenRect = GetQDGlobalsScreenBits(&screenBits)->bounds;
 standardStateHeightAndWidth.v = mainScreenRect.bottom - 100;
 standardStateHeightAndWidth.h = 600;

 if(IsWindowInStandardState(windowRef,&standardStateHeightAndWidth,NULL))
 zoomPart = inZoomIn;
 else
 zoomPart = inZoomOut;

More On Windows Version 1.0 16-19

 if(TrackBox(windowRef,eventStrucPtr->where,partCode))
 ZoomWindowIdeal(windowRef,zoomPart,&standardStateHeightAndWidth);
 break;
 }
}

// ** doUpdate

void doUpdate(EventRecord *eventStrucPtr)
{
 GrafPtr oldPort;
 WindowRef windowRef;

 GetPort(&oldPort);
 windowRef = (WindowRef) eventStrucPtr->message;

 BeginUpdate(windowRef);

 SetPortWindowPort(windowRef);
 doUpdateDocumentWindow(windowRef);

 EndUpdate(windowRef);

 SetPort(oldPort);
}

// ** doUpdateDocumentWindow

void doUpdateDocumentWindow(WindowRef windowRef)
{
 RgnHandle visibleRegionHdl = NewRgn();
 Rect contentRect;
 OSStatus osError;
 UInt32 actualSize;
 docStructureHandle docStrucHdl;
 TEHandle editStrucHdl;

 GetPortVisibleRegion(GetWindowPort(windowRef),visibleRegionHdl);
 EraseRgn(visibleRegionHdl);

 DrawGrowIcon(windowRef);

 if(!(osError = GetWindowProperty(windowRef,0,'docs',sizeof(docStrucHdl),&actualSize,
 &docStrucHdl)))
 {
 GetWindowPortBounds(windowRef,&contentRect);
 InsetRect(&contentRect,3,3);
 contentRect.right -= 15;
 contentRect.bottom -= 15;
 editStrucHdl = (*docStrucHdl)->editStrucHdl;
 (*editStrucHdl)->destRect = (*editStrucHdl)->viewRect = contentRect;
 TECalText(editStrucHdl);
 TEUpdate(&contentRect,(*docStrucHdl)->editStrucHdl);
 }
}

// ** doActivate

void doActivate(EventRecord *eventStrucPtr)
{
 WindowRef windowRef;
 Boolean becomingActive;

 windowRef = (WindowRef) eventStrucPtr->message;
 becomingActive = ((eventStrucPtr->modifiers & activeFlag) == activeFlag);

 doActivateDocumentWindow(windowRef,becomingActive);
}

16-20 Version 1.0 More On Windows

// ** doActivateDocumentWindow

void doActivateDocumentWindow(WindowRef windowRef,Boolean becomingActive)
{
 docStructureHandle docStrucHdl;
 UInt32 actualSize;
 OSStatus osError;

 if(!(osError = GetWindowProperty(windowRef,0,'docs',sizeof(docStrucHdl),&actualSize,
 &docStrucHdl)))
 {
 if(becomingActive)
 TEActivate((*docStrucHdl)->editStrucHdl);
 else
 TEDeactivate((*docStrucHdl)->editStrucHdl);
 }
}

// *** doOSEvent

void doOSEvent(EventRecord *eventStrucPtr)
{
 switch((eventStrucPtr->message >> 24) & 0x000000FF)
 {
 case suspendResumeMessage:
 if((eventStrucPtr->message & resumeFlag) == 1)
 SetThemeCursor(kThemeArrowCursor);
 break;
 }
}

// *** doAdjustMenus

void doAdjustMenus(void)
{
 MenuRef floatMenuRef;
 Boolean isVisible;
 MenuItemIndex menuItem;

 isVisible = IsWindowVisible(gColoursFloatingWindowRef);
 GetIndMenuItemWithCommandID(NULL,'fcol',1,&floatMenuRef,&menuItem);
 CheckMenuItem(floatMenuRef,menuItem,isVisible);

 isVisible = IsWindowVisible(gToolsFloatingWindowRef);
 GetIndMenuItemWithCommandID(NULL,'ftoo',1,&floatMenuRef,&menuItem);
 CheckMenuItem(floatMenuRef,menuItem,isVisible);

 DrawMenuBar();
}

// ** doMenuChoice

void doMenuChoice(SInt32 menuChoice)
{
 MenuID menuID;
 MenuItemIndex menuItem;
 OSErr osError;
 MenuCommand commandID;

 menuID = HiWord(menuChoice);
 menuItem = LoWord(menuChoice);

 if(menuID == 0)
 return;

 osError = GetMenuItemCommandID(GetMenuRef(menuID),menuItem,&commandID);
 if(osError == noErr && commandID != 0)
 {

More On Windows Version 1.0 16-21

 switch(commandID)
 {
 case 'abou':
 Alert(rAboutAlert,NULL);
 break;

 case 'quit':
 gDone = true;
 break;

 case 'cwin':
 if(osError = doCreateNewWindow())
 doErrorAlert(osError);
 break;

 case 'cwir':
 if(osError = doCreateWindowFromResource())
 doErrorAlert(osError);
 break;

 case 'fcol':
 if(IsWindowVisible(gColoursFloatingWindowRef))
 TransitionWindow(gColoursFloatingWindowRef,kWindowZoomTransitionEffect,
 kWindowHideTransitionAction,NULL);
 else
 TransitionWindow(gColoursFloatingWindowRef,kWindowZoomTransitionEffect,
 kWindowShowTransitionAction,NULL);
 break;

 case 'ftoo':
 if(IsWindowVisible(gToolsFloatingWindowRef))
 TransitionWindow(gToolsFloatingWindowRef,kWindowZoomTransitionEffect,
 kWindowHideTransitionAction,NULL);
 else
 TransitionWindow(gToolsFloatingWindowRef,kWindowZoomTransitionEffect,
 kWindowShowTransitionAction,NULL);
 break;
 }
 }

 HiliteMenu(0);
}

// *** doCreateFloatingWindows

OSErr doCreateFloatingWindows(void)
{
 Rect contentRect;
 OSStatus osError;
 PicHandle pictureHdl;

 SetRect(&contentRect,102,59,391,132);

 if(!(osError = CreateNewWindow(kFloatingWindowClass,
 kWindowStandardFloatingAttributes |
 kWindowSideTitlebarAttribute,
 &contentRect,&gColoursFloatingWindowRef)))
 {
 if(pictureHdl = GetPicture(rColoursPicture))
 SetWindowPic(gColoursFloatingWindowRef,pictureHdl);

 osError = TransitionWindow(gColoursFloatingWindowRef,kWindowZoomTransitionEffect,
 kWindowShowTransitionAction,NULL);
 }

 if(osError != noErr)
 return osError;

 SetRect(&contentRect,149,88,213,280);

16-22 Version 1.0 More On Windows

 if(!(osError = CreateNewWindow(kFloatingWindowClass,
 kWindowStandardFloatingAttributes,
 &contentRect,&gToolsFloatingWindowRef)))
 {
 if(pictureHdl = GetPicture(rToolsPicture))
 SetWindowPic(gToolsFloatingWindowRef,pictureHdl);

 osError = TransitionWindow(gToolsFloatingWindowRef,kWindowZoomTransitionEffect,
 kWindowShowTransitionAction,NULL);
 }

 return osError;
}

// *** doCreateNewWindow

OSErr doCreateNewWindow(void)
{
 Rect contentRect;
 OSStatus osError;
 WindowRef windowRef;
 docStructureHandle docStrucHdl;
 Handle textHdl;
 MenuRef menuRef;

 SetRect(&contentRect,10,40,470,340);

 do
 {
 if(osError = CreateNewWindow(kDocumentWindowClass,kWindowStandardDocumentAttributes,
 &contentRect,&windowRef))
 break;

 if(gRunningOnX)
 ChangeWindowAttributes(windowRef,kWindowLiveResizeAttribute,0);

 if(!(docStrucHdl = (docStructureHandle) NewHandle(sizeof(docStructure))))
 {
 osError = MemError();
 break;
 }

 if(osError = SetWindowProperty(windowRef,0,'docs',sizeof(docStructure),
 &docStrucHdl))
 break;

 SetPortWindowPort(windowRef);
 UseThemeFont(kThemeSmallSystemFont,smSystemScript);

 textHdl = GetResource('TEXT',rText);
 osError = ResError();
 if(osError != noErr)
 break;

 OffsetRect(&contentRect,-contentRect.left,-contentRect.top);
 InsetRect(&contentRect,3,3);
 contentRect.right -= 15;
 contentRect.bottom -= 15;

 (*docStrucHdl)->editStrucHdl = TENew(&contentRect,&contentRect);
 TEInsert(*textHdl,GetHandleSize(textHdl),(*docStrucHdl)->editStrucHdl);

 SetWTitle(windowRef,"\pCreateNewWindow");

 if(osError = SetWindowProxyCreatorAndType(windowRef,0,'TEXT',kOnSystemDisk))
 break;
 if(osError = SetWindowModified(windowRef,false))
 break;

More On Windows Version 1.0 16-23

 if(osError = RepositionWindow(windowRef,NULL,kWindowCascadeOnMainScreen))
 break;
 if(osError = TransitionWindow(windowRef,kWindowZoomTransitionEffect,
 kWindowShowTransitionAction,NULL))
 break;

 if(osError = doSaveWindow(windowRef))
 break;

 } while(false);

 if(osError)
 {
 if(windowRef)
 DisposeWindow(windowRef);

 if(docStrucHdl)
 DisposeHandle((Handle) docStrucHdl);
 }

 return osError;
}

// ** doSaveWindow

OSErr doSaveWindow(WindowRef windowRef)
{
 SInt16 oldResFileRefNum;
 Collection collection = NULL;
 OSStatus osError;
 docStructureHandle docStrucHdl;
 UInt32 actualSize;
 Handle flatCollectHdl, flatCollectResHdl, existingResHdl;

 oldResFileRefNum = CurResFile();
 UseResFile(gDocResFileRefNum);

 do
 {
 if(!(collection = NewCollection()))
 {
 osError = MemError();
 break;
 }

 if(osError = StoreWindowIntoCollection(windowRef,collection))
 break;

 if(osError = GetWindowProperty(windowRef,0,'docs',sizeof(docStrucHdl),&actualSize,
 &docStrucHdl))
 break;

 if(osError = AddCollectionItemHdl(collection,'TEXT',1,
 (*(*docStrucHdl)->editStrucHdl)->hText))
 break;

 if(!(flatCollectHdl = NewHandle(0)))
 {
 osError = MemError();
 break;
 }

 if(osError = FlattenCollectionToHdl(collection,flatCollectHdl))
 break;

 existingResHdl = Get1Resource('wind',rWind);
 osError = ResError();
 if(osError != noErr && osError != resNotFound)
 break;

16-24 Version 1.0 More On Windows

 if(existingResHdl != NULL)
 RemoveResource(existingResHdl);
 osError = ResError();
 if(osError != noErr)
 break;

 AddResource(flatCollectHdl,'wind',rWind,"\p");
 osError = ResError();
 if(osError != noErr)
 break;

 flatCollectResHdl = flatCollectHdl;
 flatCollectHdl = NULL;

 WriteResource(flatCollectResHdl);
 osError = ResError();
 if(osError != noErr)
 break;

 UpdateResFile(gDocResFileRefNum);
 osError = ResError();
 if(osError != noErr)
 break;
 } while(false);

 if(collection)
 DisposeCollection(collection);
 if(flatCollectHdl)
 DisposeHandle(flatCollectHdl);
 if(flatCollectResHdl)
 ReleaseResource(flatCollectResHdl);

 UseResFile(oldResFileRefNum);

 return osError;
}

// ** doCreateWindowFromResource

OSErr doCreateWindowFromResource(void)
{
 SInt16 oldResFileRefNum;
 OSStatus osError;
 WindowRef windowRef;
 Collection unflattenedCollection = NULL;
 Handle windResHdl;
 docStructureHandle docStrucHdl;
 SInt32 dataSize = 0;
 Handle textHdl;
 Rect contentRect;

 oldResFileRefNum = CurResFile();
 UseResFile(gDocResFileRefNum);

 do
 {
 if(osError = CreateWindowFromResource(rWind,&windowRef))
 break;

 if(gRunningOnX)
 ChangeWindowAttributes(windowRef,kWindowLiveResizeAttribute,0);

 if(!(unflattenedCollection = NewCollection()))
 {
 osError = MemError();
 break;
 }

More On Windows Version 1.0 16-25

 windResHdl = GetResource('wind',rWind);
 osError = ResError();
 if(osError != noErr)
 break;

 if(osError = UnflattenCollectionFromHdl(unflattenedCollection,windResHdl))
 break;

 if(!(docStrucHdl = (docStructureHandle) NewHandle(sizeof(docStructure))))
 {
 osError = MemError();
 break;
 }

 if(osError = GetCollectionItem(unflattenedCollection,'TEXT',1,&dataSize,
 kCollectionDontWantData))
 break;

 if(!(textHdl = NewHandle(dataSize)))
 {
 osError = MemError();
 break;
 }

 if(osError = GetCollectionItem(unflattenedCollection,'TEXT',1,kCollectionDontWantSize,
 *textHdl))
 break;

 GetWindowPortBounds(windowRef,&contentRect);
 contentRect.right -= 15;
 contentRect.bottom -= 15;
 SetPortWindowPort(windowRef);
 UseThemeFont(kThemeSmallSystemFont,smSystemScript);
 (*docStrucHdl)->editStrucHdl = TENew(&contentRect,&contentRect);
 TEInsert(*textHdl,dataSize,(*docStrucHdl)->editStrucHdl);

 if(osError = SetWindowProperty(windowRef,0,'docs',sizeof(docStrucHdl),&docStrucHdl))
 break;

 SetWTitle(windowRef,"\pCreateWindowFromResource");

 if(osError = SetWindowProxyCreatorAndType(windowRef,0,'TEXT',kOnSystemDisk))
 break;
 if(osError = SetWindowModified(windowRef,false))
 break;
 if(osError = RepositionWindow(windowRef,NULL,kWindowCascadeOnMainScreen))
 break;
 if(osError = TransitionWindow(windowRef,kWindowZoomTransitionEffect,
 kWindowShowTransitionAction,NULL))
 break;
 } while(false);

 if(unflattenedCollection)
 DisposeCollection(unflattenedCollection);
 if(windResHdl)
 ReleaseResource(windResHdl);

 UseResFile(oldResFileRefNum);

 return osError;
}

// *** doCloseWindow

void doCloseWindow(WindowRef windowRef)
{
 OSStatus osError;
 docStructureHandle docStrucHdl;
 UInt32 actualSize;

16-26 Version 1.0 More On Windows

 do
 {
 if(osError = TransitionWindow(windowRef,kWindowZoomTransitionEffect,
 kWindowHideTransitionAction,NULL))
 break;

 if(osError = GetWindowProperty(windowRef,0,'docs',sizeof(docStrucHdl),&actualSize,
 &docStrucHdl))
 break;
 } while(false);

 if(osError)
 doErrorAlert(osError);

 if((*docStrucHdl)->editStrucHdl)
 TEDispose((*docStrucHdl)->editStrucHdl);

 if(docStrucHdl)
 DisposeHandle((Handle) docStrucHdl);

 DisposeWindow(windowRef);
}

// ** doErrorAlert

void doErrorAlert(SInt16 errorCode)
{
 Str255 errorCodeString;
 Str255 theString = "\pAn error occurred. The error code is ";
 SInt16 itemHit;

 NumToString((SInt32) errorCode,errorCodeString);
 doConcatPStrings(theString,errorCodeString);

 StandardAlert(kAlertStopAlert,theString,NULL,NULL,&itemHit);
 ExitToShell();
}

// ** doConcatPStrings

void doConcatPStrings(Str255 targetString,Str255 appendString)
{
 SInt16 appendLength;

 appendLength = MIN(appendString[0],255 - targetString[0]);

 if(appendLength > 0)
 {
 BlockMoveData(appendString+1,targetString+targetString[0]+1,(SInt32) appendLength);
 targetString[0] += appendLength;
 }
}

// ***

More On Windows Version 1.0 16-27

Demonstration Program Windows2 Comments
Two Window Manager features introduced with Mac OS 8.5 (full window proxy icon implementation and window
path pop-up menus) are not demonstrated in this program. However, they are demonstrated at the
demonstration program associated with Chapter 18.

When the program is run, the user should:

• Choose CreateNewWindow from the Document Windows menu, noting that, when the new window is displayed,
the floating windows and the new (document) window are all active.

(Note: As well as creating the window, the program loads and displays a 'TEXT' resource (simulating a
document associated with the window) and then saves the window and the text to a 'wind' resource.)

• Choose CreateWindowFromResource from the Document Windows menu, noting that the window is created from
the 'wind' resource saved when CreateNewWindow was chosen.

• Choose About Windows2… from the Apple menu, noting that the floating windows appear in the deactivated
state when the alert box opens.

• Hide the floating windows by clicking their close boxes, and toggle the floating windows between hidden
and showing by choosing their items in the Floating Windows menu, noting the transitional animations.

• Click in the Finder to send the application to the background, noting that the floating windows are
hidden by this action. Then click in one of the application's windows, noting that the floating
windows re-appear.

• Note the transitional animations when the document windows are opened and closed.

• Exercise the system-managed Window menu, noting the customisation of this menu when the program is run
on Mac OS X.

defines
rWind represents the ID of the 'wind' resource created by the program.

typedefs
A document structure of type docStructure will be associated with each document window. The single field
in the document structure (editStrucHdl) will be assigned a handle to a TextEdit edit structure, which
will contain the text displayed in the window.

Global Variables
gDocResFileRefNum will be assigned the file reference number for the resource fork of the document file
"Windows2 Document" included in the demo program's folder. gColoursFloatingWindowRef and
gToolsFloatingWindowRef will be assigned references to the window objects for the floating windows.

main
The call to CreateStandardWindowMenu creates the system-managed Window menu, which is added to the menu
list by the call to InsertMenu. If the program is running on Mac OS X, the next block customises the
Window menu by searching for the item with the command ID 'wldv' (that is, the divider between the
commands and the individual window items), inserting a divider and two custom items before that item, and
assigning command IDs to those items. (At the time of writing, the divider did not have the 'wldv'
command ID in CarbonLib.)

The resource fork of the file titled "Windows2 Document" is opened and the file reference number is saved
to a global variable. The program will be saving a 'wind' resource to this file's resource fork.

CurResFile is called to set the application's resource fork as the current resource file.

The function doCreateFloatingWindows is called to create and show the floating windows.

In the next block (the main event loop), WaitNextEvent's sleep parameter is assigned the value returned by
GetCaretTime. (GetCaretTime returns the value stored in the low memory global CaretTime, which determines
the blinking rate for the insertion point caret as set by the user. This ensures that TEIdle, which
causes the caret to blink, will be called at the correct interval.

When WaitNextEvent returns 0 with a null event, FrontNonFloatingWindow is called to obtain a reference to
the front document window. If such a window exists, GetWindowProperty is called to retrieve a handle to

16-28 Version 1.0 More On Windows

the window's document structure. The handle to the TextEdit edit structure, which is stored in the
window's document structure, is then passed in the call to TEIdle, which causes the insertion point caret
to blink.

doMouseDown
doMouseDown continues the processing of mouse-down events, switching according to the part code.

The inContent case is handled differently depending on whether the event is in a floating window or a
document window. GetWindowClass returns the window's class. If the window is a floating window, and if
that window is not the front floating window, SelectWindow is called to bring that floating window to the
front. If the window is the front floating window, the identity of the window is determined and the
appropriate further action is taken. (In this demonstration, no further action is taken.)

If the window is not a floating window, and if the window is not the front non-floating window,
SelectWindow is called to:

• Unhighlight the currently active non-floating window, bring the specified window to the front of the
non-floating windows, and highlight it.

• Generate activate events for the two windows.

• Move the previously active non-floating window to a position immediately behind the specified window.

If the window is the front non-floating window, the appropriate further action is taken. (In this
demonstration, no further action is taken.)

The inGoAway case is also handled differently depending on whether the event is in a floating window or a
document window. TrackGoAway is called in both cases to track user action while the mouse-button remains
down. If the pointer is still within the go away box when the mouse-button is released, and if the window
is a floating window, TransitionWindow is called to hide the window. If the window is a non-floating
window, the function doCloseWindow is called to close the window.

doUpdate
doUpdate further processes update events. When an update event is received, doUpdate calls
doUpdateDocumentWindow. (As will be seen, in this particular demonstration, the Window Manager will not
generate updates for the floating windows.)

doUpdateDocumentWindow
doUpdateDocumentWindow is concerned with the drawing of the content region of the non-floating windows.

GetWindowProperty is then called to retrieve the handle to the window's document structure, which, as
previously stated, contains a handle to a TextEdit structure containing the text displayed in the window.
If the call is successful, measures are taken to redraw the text in the window, taking account of the
current height and width of the content region less the area that would ordinarily be occupied by scroll
bars. (The TextEdit calls in this section are incidental to the demonstration. TextEdit is addressed at
Chapter 21.)

doActivateDocumentWindow
doActivateDocumentWindow performs, for the non-floating windows, those window activation actions for which
the application is responsible. In this demonstration, that action is limited to calling TEActivate or
TEDeactivate to show or remove the insertion point caret.

GetWindowProperty is called to retrieve the handle to the window's document structure, which contains a
handle to the TextEdit structure containing the text displayed in the window. If this call is successful,
and if the window is being activated, TEActivate is called to display the insertion point caret. If the
window is being deactivated, TEDeactivate is called to remove the insertion point caret.

doAdjustMenus
doAdjustMenus is called in the event of a mouse-down event in the menu bar when a key is pressed together
with the Command key. The function checks or unchecks the items in the Floating Windows menu depending on
whether the associated floating window is currently showing or hidden.

doMenuChoice
doMenuChoice switches according to the menu choices of the user.

If the user chooses the About Windows2… item from the Apple menu, Alert is called to display the About
Windows2… alert box.

More On Windows Version 1.0 16-29

If the user chose the first item in the Document Windows menu, the function doCreateNewWindow is called.
If the user chose the second item, the function doCreateWindowFromResource is called. If either of these
functions return an error, an error-handling function is called.

When an item in the Floating Windows menu is chosen, IsWindowVisible is called to determine the visibility
state of the relevant floating window. TransitionWindow is then called, with the appropriate constant
passed in the action parameter, to hide or show the window depending on the previously determined current
visibility state.

doCreateFloatingWindows
doCreateFloatingWindows is called from main to create the floating windows.

The Colours floating window is created first. SetRect is called to define a rectangle which will be used
to establish the size of the window and its opening location in global coordinates. CreateNewWindow is
then called to create a floating window (first parameter) with a close box, a collapse box, and a side
title bar (second parameter), and with the previously defined content region size and location (third
parameter).

If this call is successful, GetPicture is called to load the specified 'PICT' resource. If the resource
is loaded successfully, SetWindowPic is called to store the handle to the picture structure in the
windowPic field of the window's colour window structure. This latter means that the Window Manager will
draw the picture in the window instead of generating update events for it. Finally, TransitionWindow is
called to make the window visible (with animation and sound).

The same general procedure is then followed to create the Tools floating window.

doCreateNewWindow
doCreateNewWindow is called when the user chooses Create New Window from the Document Windows menu. In
addition to creating a window, and for the purposes of this demonstration, doCreateNewWindow also saves
the window and its associated data (text) in a 'wind' resource.

Firstly, SetRect is called to define a rectangle that will be used to establish the size of the window and
its opening location in global coordinates. The call to CreateNewWindow creates a document window (first
parameter) with a close box, a full zoom box, a collapse box, and a size box (second parameter), and with
the previously defined content region size and location (third parameter).

if the program is running on Mac OS X, ChangeWindowAttributes is called to set the
kWindowLiveResizeAttribute. This results in a partial implementation of live resizing.

NewHandle is then called to create a relocatable block for the document structure to be associated with
the window. SetWindowProperty associates the document structure with the window. 0 is passed in the
propertyCreator parameter because this demonstration has no application signature. The value passed in
the propertyTag parameter ('docs') is just a convenient value with which to identify the data.

The call to SetPortWindowPort sets the window's graphics port as the current port and the call to
UseThemeFont sets the window's font to the small system font.

The next three blocks load a 'TEXT' resource, insert the text into a TextEdit structure, and assign a
handle to that structure to the editStrucHdl field of the window's document structure. This is all for
the purpose of simulating some text that the user has typed into the window.

SetWTitle sets the window's title.

The window lacks an associated file, so SetWindowProxyCreatorAndType is called to cause a proxy icon to be
displayed in the window's drag bar. 0 passed in the fileCreator parameter and 'TEXT' passed in the
fileType parameter cause the system's default icon for a document file to be displayed. SetWindowModified
is then called with false passed in the modified parameter to cause the proxy icon to appear in the
enabled state (indicating no unsaved changes).

The call to RepositionWindow positions the window relative to other windows according to the constant
passed in the method parameter.

As the final step in creating the window, TransitionWindow is called to make the window visible (with
animation).

To facilitate the demonstration of creating a window from a 'wind' resource (see the function
doCreateWindowFromResource), a function is called to save the window and its data (the text) to a 'wind'
resource in the application's resource fork.

16-30 Version 1.0 More On Windows

If an error occurred within the do/while loop, if a window was created, it is disposed of. Also, if a
nonrelocatable block for the document structure was created, it is disposed of.

doSaveWindow
doSaveWindow is called by doCreateNewWindow to save the window and its data (the text) to a 'wind'
resource.

Firstly, the current resource file's file reference number is saved and the resource fork of the document
titled "Windows2 Document" is made the current resource file.

The call to the Collection Manager function NewCollection allocates memory for as new collection object
and initialises it. The call to StoreWindowIntoCollection stores data describing the window into the
collection.

GetWindowProperty retrieves the handle to the window's document structure.

The handle to the window's text is stored in the hText field of the TextEdit structure. The handle to the
TextEdit structure is, in turn, stored in the window's document structure. The Collection Manager
function AddCollectionItemHdl adds a new item to the collection, specifically, a copy of the text.

The call to NewHandle allocates a zero-length handle which will be used to hold a flattened collection.
The Collection Manager function FlattenCollectionToHdl flattens the collection into a Memory Manager
handle.

The next six blocks use Resource Manager functions to save the flattened collection as a 'wind' resource
in the resource fork of the application file.

Get1Resource attempts to load a 'wind' resource with ID 128. If ResError reports an error, and if the
error is not the "resource not found" error, the whole save process is aborted. (Accepting the "resource
not found" error as an acceptable error caters for the possibility that this may be the first time the
window and its data have been saved.)

If Get1Resource successfully loaded a 'wind' resource with ID 128, RemoveResource is called to remove that
resource from the resource map, AddResource is called to make the flattened collection in memory into a
'wind' resource, assigning a resource type, ID and name to that resource, and inserting an entry in the
resource map for the current resource file. WriteResource is called to write the resource to the document
file's resource fork. Since the resource map has been changed, UpdateResFile is called to update the
resource map on disk.

Below the do/while loop, the collection and the flattened collection block are disposed of and the
resource in memory is released.

Finally, the saved resource file is made the current resource file.

doCreateWindowFromResource
doCreateWindowFromResource creates a window from the 'wind' resource created by doSaveWindow.

Firstly, the current resource file's file reference number is saved and the resource fork of the document
titled "Windows2 Document" is made the current resource file.

CreateWindowFromResource creates a window, invisibly, from the 'wind' resource with ID 128.

The call to the Collection Manager function NewCollection creates a new collection. GetResource loads the
'wind' resource with ID 128. The Collection Manager function UnflattenCollectionFromHdl unflattens the
'wind' resource and stores the unflattened collection in the collection object unflattenedCollection.

NewHandle allocates a relocatable block the size of a window document structure.

The Collection Manager function GetCollectionItem is called twice, the first time to get the size of the
text data, not the data itself. (The item in the collection is specified by the second and third
parameters (tag and ID)). This allows the call to NewHandle to create a relocatable block of the same
size. GetCollection is then called again, this time to obtain a copy of the text itself.

The next block creates a new TextEdit structure (TENew), assigning its handle to the editStrucHdl field of
the document structure which will shortly be associated with the window. TEInsert inserts the copy of the
text obtained by the second call to GetCollectionItem into the TextEdit structure.

The call to SetWindowProperty associates the document structure with the window, thus associating the
TextEdit structure and its text with the window.

More On Windows Version 1.0 16-31

SetWTitle sets the window's title.

The window lacks an associated file, so the Mac OS 8.5 function SetWindowProxyCreatorAndType is called to
cause a proxy icon to be displayed in the window's drag bar. 0 passed in the fileCreator parameter and
'TEXT' passed in the fileType parameter cause the system's default icon for a document file to be
displayed. SetWindowModified is then called with false passed in the modified parameter to cause the
proxy icon to appear in the enabled state (indicating no unsaved changes).

The call to RepositionWindow positions the window relative to other windows according to the constant
passed in the method parameter.

As the final step in creating the window, TransitionWindow is called to make the window visible (with
animation).

Below the do/while loop, the unflattened collection is disposed of and the 'wind' resource is released.

Finally, the saved resource file is made the current resource file.

doCloseWindow
doCloseWindow is called when the user clicks the close box of a document window.

TransitionWindow is called to hide the window (with animation). GetWindowProperty is then called to
retrieve a handle to the window's document structure, allowing the memory occupied by the TextEdit
structure and document structure associated with the window to be disposed of. DisposeWindow is then
called to remove the window from the window list and discard all its data storage.

doErrorAlert
doErrorAlert is called when errors are detected. In this demonstration, the action taken is somewhat
rudimentary. A stop alert box displaying the error number is invoked. When the user dismisses the alert
box, the program terminates. eventFilter supports doErrorAlert.

	Introduction
	Floating Windows
	Floating Window Types
	Opening, Closing, Showing, and Hiding Floating Windows
	Functions Relating to Floating Windows

	Utility and Toolbar Windows
	Window Proxy Icons
	Changing the State of a Proxy Icon
	Handling Mouse-Down Events in a Window Proxy Icon
	Proxy Icons and File Synchronisation Functions
	Functions Relating to Window Proxy Icons

	Window Path Pop-Up Menus
	Displaying and Handling a Window Path Pop-Up Menu

	Transitional Window Animation and Sounds
	Creating and Storing Windows
	Collections, Flattened Collections, and 'wind' Resources
	Collections
	Flattened Collections
	The 'wind' Resource

	The CreateNewWindow Function
	Window Class Constants
	Window Attribute Constants

	Accessing Window Information
	Moving and Positioning Windows
	Moving Windows
	Positioning Windows

	Associating Data With Windows
	Adding To and Removing From the Update Region
	Setting Content Region Colour and Pattern
	Window Scrolling
	The Window Menu
	Customising the Window Menu

	Live Window Resizing
	Main Constants, Data Types, and Functions
	Demonstration Program Windows2 Listing
	Demonstration Program Windows2 Comments

